Tutorials BNN Aviation provides all Aviation related Consultancy Services for the development of Helipads, Heliports, Elevated Helipads, Roof Top Helipads, Hospital Helipads, Runway and Associated Infrastructure, Air Strips/Aircraft Landing Grounds. As for details kindly Call us at +91- 8178431060, +91- 9871441052 or Email us at bnnaviation@gmail.com Tutorials BNN Aviation's professionals help the operators in preparing Manuals at very competitive rates in record time & also help in obtaining DGCA Approval for Operation Manuals, Flight Safety Manuals, SMS Manuals, FSDS Manual, Emergency Response Plans, Security Manuals, DGR Manuals. As for details kindly Call us at +91- 8178431060, +91- 9871441052 or Email us at bnnaviation@gmail.com

CAT : Clear Air Turbulence


Clear Air Turbulence (CAT) is defined as sudden severe turbulence occurring in cloudless regions that causes violent buffeting of aircraft. This term is commonly applied to higher altitude turbulence associated with wind shear. The most comprehensive definition is high-altitude turbulence encountered outside of convective clouds. This includes turbulence in cirrus clouds, within and in the vicinity of standing lenticular clouds and, in some cases, in clear air in the vicinity of thunderstorms. Generally, though, CAT definitions exclude turbulence caused by thunderstorms, low-altitude temperature inversions, thermals, strong surface winds, or local terrain features.


There are two types of CAT:

  • Mechanical. Disruption to the smooth horizontal flow of air.
  • Thermal. Turbulence caused by vertical currents of air in an unstable atmosphere.

Common causes and sources of CAT are:

  • Jet Stream. A Jet Stream is a narrow, fast moving current of air, normally close to the Tropopause and generated as a result of the temperature gradient between air masses. Although not all jet streams have CAT associated with them, there can be significant vertical and horizontal Low Level Wind Shear on the edges of the jet stream giving rise to sometimes severe clear air turbulence. Any CAT is strongest on the cold side of the jet stream where the wind shear is greatest. In the vicinity of a jet stream, CAT can be encountered anywhere from 7,000 feet below to about 3,000 feet above the tropopause. Because the strong vertical and horizontal wind shear occurs over short distances, this jet stream related CAT tends to be shallow and patchy so a descent or climb of as little as 2,000 feet is often enough to exit the turbulence.
  • Terrain. High ground disturbs the horizontal flow of air over it, causing turbulence. The severity of the turbulence depends on the strength of the air flow, the roughness of the terrain, the rate of change and curvature of contours, and the elevation of the high ground above surrounding terrain. For further information, refer to the article entitled Mountain Waves.
  • Thunderstorm Complexes. Cumulonimbus (Cb) cells have strong vertical currents. Aircraft passing within 20 nautical miles horizontally, or less than 5,000 feet above the top, of a Cb may encounter CAT.


  • Structural Damage. Aircraft can suffer structural damage as a result of encountering severe clear air turbulence. In extreme cases this can lead to the break-up of the aircraft. In even moderate turbulence, damage can occur to fittings within the aircraft, especially as a result of collision with unrestrained items of cargo or passenger luggage. Prolonged exposure to turbulence will shorten the fatigue life of the aircraft.
  • Physical Injury to Crew/Passengers. If caught unaware, passengers and crew moving around in the aircraft cabin can be injured. In one case, where a B747 encountered CAT over the Pacific Ocean, several passengers and crew were severely injured and one passenger subsequently died.
  • Impaired Flight Crew Performance. Moderate or Severe turbulence can make simple tasks, including reading instruments, near impossible.


  • Awareness. SIGMET charts give forecasts of the location and level of clear air turbulence. Information on local terrain induced CAT may be contained in appropriate Aeronautical Information Publications (AIPs) e.g. Approach plates for Gibraltar contain information on turbulence to be expected for given wind directions.
  • Restraint Systems. Passengers and crew should fit seat belts and harnesses when seated to protect them in the event of unforeseen turbulence.


  • Slow down. Reducing the aircraft speed reduces the risk of structural damage and reduces vibration making instruments easier to read.
  • Strap in. Notify the crew/illuminate seat belt sign. All passengers and crew should immediately sit down and fit seat belts/harnesses.
  • Switch on Engine Ignition – Certain aircraft types recommend turning ignition on to prevent the turbulent airflow from flaming out engines.
  • Inform ATC. Notify ATC/warn other aircraft on chat or guard/emergency frequency (121.5 or 243.0). Request clearance to climb/descend or diverge from track to escape turbulence.
  • Assess Damage/Injuries. Carry out a damage assessment and ascertain condition of any injured passengers. Consider precautionary diversion.
  • Suspend Cabin Service. Obviously the serving of hot drinks and meals during turbulent conditions puts both cabin crew and passengers at risk.

Membership Form


  • Section